Skip to Content

Blog Archives

April sire lists

No matter what genetic plan you’ve put in place on your farm, we have daughter-proven and genomic-proven bulls to meet your goals.

We have access to all you need in one place, in formats that are easy to print. Here you will find lists to download with any of Alta’s Holstein and Jersey specialty sires. Below, are the A2A2, polled, outcross, robot-suited and kappa casein sires. There is also a listing of our top DWP$ and WT$ sires, milking speed ratings, and registry status listings.

If you’re looking for a customized approach to the right beef bulls to use in your dairy herd, learn more about the Alta Beef ADVANTAGE.

  • HIGH FERTILITY
  • CALVING EASE
  • GROWTH PERFORMANCE
  • CARCASS QUALITY

Work with your trusted Alta advisor to customize your genetic plan using our Advanced Bull Search or Alta GPS.

0 Continue Reading →

The proof is in your numbers

Let us show you…

We can show you the proof that genetics are one of the cheapest investments you can make to improve the profitability and efficiency of your herd. Proof sheet numbers may seem unclear or unrealistic. So we break them down to see how they translate within your own herd.

When you use a herd management software program, we can create a genetic assessment of your herd to see if genetics really work on your farm.

Do your 2-year-olds give as many pounds of milk as their sires’ proofs predict? Do these cows become pregnant as quickly as their sires’ DPR numbers suggest? And do daughter stillbirth numbers prove to be accurate indicators of DOAs?

When we do a genetic assessment for your herd, it’s important to realize that we only take into account first-lactation animals in order to minimize environmental effects. Phenotype equals genetics plus environment. So when we eliminate – or at least minimize – environmental influences, the actual performance differences we see are due to genetics.

We want to show you how those proof numbers translate to more pounds of milk, more pregnancies and fewer stillborn calves. So here, we take one of our real DairyComp 305 analyses of a real 1,500-cow herd for answers.

The proof in genetics: PTA Milk (PTAM)

We start with PTAM, which tells us how many more pounds of milk a first-lactation animal will produce compared to herdmates on a 305-day ME basis. We set out to find if higher PTAM values on this farm actually convert to more pounds of milk in the tank.

In this example, we sort all first-lactation animals with a known Holstein sire ID, solely on their sires’ PTAM values. We then compare that to their actual 305-day ME milk records.

As Table 1 shows, based on genetics, we expect the top 25 percent of first-lactation heifers to produce 1,541 more pounds of milk on a 305ME basis than their lower PTAM counterparts. In reality, we see a 2,662-pound difference between the top PTAM animals and the bottom in actual daughter performance.

Table 1: How does selection for PTAM affect actual 305ME performance?
# of cowsAvg. Sire PTAMAvg. 305ME Production
Top 25% high sire PTAM178150844080
Bottom 25% low sire PTAM171-3341418
Difference15412662
This means that for every pound of milk this herd selects for, they actually get an additional 1.69 pounds of milk. So these first-lactation animals are producing well beyond their genetic potential.

Why do they get more than expected?

When we do most on-farm genetic assessments, we find that the 305ME values closely match the predicted difference based on sire PTAM. However, in this example, the production exceeds what’s expected by more than 1,100 pounds.

We often attribute that bonus milk top-level management, where genetics are allowed to express themselves. This particular herd provides a comfortable and consistent environment for all cows. All of these 2-year-olds are fed the same ration, housed in the same barn and given the same routine. At more than a 40,000-pound average 305ME, this is certainly a well-managed herd, which allows the top genetic animals to exceed their genetic production potential.

Perhaps even more importantly, the identification in this herd is more than 95 percent accurate. Without accurate identification, this analysis simply won’t work. That’s because some cows whose real sire information puts them in the bottom quartile will actually appear in the top quartile and vice-versa.

0 0 Continue Reading →

Polled genetics – examine the pros and cons

The polled gene in dairy cattle is dominant over the horned gene

Polled dairy cattle trace back as far as pedigree records have been kept. The polled gene in dairy cattle is dominant over the horned gene. Yet horned cattle are still much more prevalent in the global dairy population because few producers ever chose to select for polled cattle as part of their breeding program. This is because the real, economic paybacks of selecting for production, health and conformation traits has traditionally trumped the desire for polled genetics.

Genomic selection has allowed polled enthusiasts to focus on high ranking polled animals to propagate the polled population. However, producers stressing genetic improvement in other traits are also advancing their genetics at an equally rapid rate.

You can add polled as a criteria to your genetic plan, but must keep in mind the financial repercussions of that decision in terms of the pounds of milk and components you’ll give up, and the health and fertility you may need to sacrifice, just to avoid dehorning.

The more recent public awareness about dehorning cattle has made it another hot button topic in the industry. The naturally hornless cattle have gained popularity in recent years because of consumer opinion on the dehorning process, and the side effects they feel result from it. This perception has driven producers to create more naturally polled animals than ever in the past.

The pros of polled genetics

Despite the genetic and performance sacrifices made by selecting for polled animals, many producers do see the opportunity to incorporate polled genetics into their breeding program.

  • Avoid dehorning

You can save dollars, time, and labor, and also minimize stress on your calves by foregoing the need for dehorning. The average dehorning cost varies from one farm to the next based on the chosen method of dehorning, and there is a chance of causing additional stress on the calves during a crucial growth time.

However, it’s important to remember that modern dehorning methods done properly, and at an early age, will nearly eliminate stress on the calves, and will minimize your time and costs.

  • Cater to consumer perceptions

It’s a fact that consumer perception directs many aspects of the dairy industry’s reality. Animal rights activists have criticized dehorning for years, but it hasn’t been until recently that the general public has joined the activists’ view on dehorning as a detrimental process. With increased awareness about this common farm chore also comes increased consumer demands on how they feel farmers should handle it on their dairies.

We clearly don’t want animals with horns running around dairies, so the question is whether to dehorn calves or breed for polled genetics. Unless consumers are willing to pay a premium for milk from naturally hornless cattle, you will likely be leaving dollars on the table by selecting exclusively for homozygous polled sires if you want to ensure no animals are born with horns.

  • The polled gene is dominant

The basics of genetics tell us that since the polled gene is dominant over the horned gene, animals with one copy of the polled gene and one copy of the horned gene will not have horns, and a naturally hornless animal can be created in one generation. It also means it is easier to make more polled animals faster than if the polled gene was recessive.

An animal can have one of three combinations for the polled/horned gene:

PP = homozygous polled means this animal has no horns, an all offspring from the animal will be born without horns
Pp = heterozygous polled means this animal does not have horns, but offspring may or may not have horns depending on their mate
pp = born with horns

If you’re starting with only horned animals in your herd, the figures below demonstrate your results mating cows to a polled sire. The table on the left shows that a homozygous polled bull bred to a horned cow will result in 100% hornless offspring. The table on the right illustrates that a heterozygous polled sire bred to a horned cow will result in only 50% polled offspring.

Punnet square to demonstrate the resulting offspring when a homozygous polled sire is mated to a horned dam
A homozygous polled sire mated to a horned dam results in a 100% chance of polled offspring.
Punnet square to demonstrate the possible resulting offspring when mating a heterozygous polled sire with a horned dam
A heterozygous polled sire mated to a horned dam results in a 50% chance of heterozygous polled offspring and a 50% chance of horned offspring.

The downside to polled genetics

Eliminating the need for dehorning may seem like the right choice for your dairy. However, the genetic sacrifices you will make in order to get to that point cannot be overlooked. Whenever you add extra selection criteria to your genetic plan, you will sacrifice in other areas. Here are just a few reasons to think twice about selecting exclusively for polled genetics in your herd.

  • The continuous need for polled sires
    Like mentioned above, the polled gene is dominant, so you can create a polled offspring in just one generation. What many producers tend to forget is that, at this point, maintaining a population of polled cattle in your herd is much more difficult.

As the images above show, using a heterozygous polled bull will not yield 100% polled offspring. To get to the point of a completely polled herd, and to maintain it once you’re there, you continually need to use only homozygous polled sires. This may not seem difficult, but it leads to the next shortcoming of using exclusively polled sires.

  • Limited availability and variation on polled sires
    Since the prevalence of polled animals within the various dairy breeds is still low, it will still take many generations to genetically eradicate horned animals from your herd if you want to maintain reasonable inbreeding levels.

Even though the number of polled bulls in active AI has increased substantially over recent years, the total number of sires providing that polled gene is still limited. AI companies will only bring in bulls at genetic levels high enough to help you make progress in your herd. And since selection for polled animals has only recently gained popularity, many of the polled bulls are closely related – either from a small group of elite polled cow families or with sires in common.

Even with selection standards in place for elite polled animals, their genetic levels don’t yet match up.

  • Genetic sacrifice and compromised future performance
    Most importantly, at this point in time, polled bulls, as a whole, don’t yet live up to the genetic levels of their horned counterparts. With polled as a strict selection criteria, you will miss out on the best sires, regardless if you select from the genomic or daughter-proven lists. When you figure the amount of production, health and conformation that could be lost by limiting your options to only polled sires, dehorning calves becomes even less of an issue.

Review your pros and cons for polled genetics

As you set your genetic plan keep in mind the pros and cons of selecting exclusively for polled genetics. At this point, the overall genetic and performance levels of horned animals still outpace those of polled cattle. Modern dehorning methods minimize stress on calves, so when performed correctly and at the proper time, it should be almost a non-issue.

On the flip side, you could make a case for exclusively polled sire selection if your milk plant is willing to pay more for milk from polled cattle, or if consumer perception drives your decisions.

Regardless of your selection decision, make sure it aligns with the customized genetic plan you put in place so the genetic progress you make on your farm is in the direction of your goals.

0 0 Continue Reading →

Inbreeding: manage it to maximize profit

Inbreeding is a hot topic…

Are you concerned about whether genomics is creating too much inbreeding in the dairy cattle population? Many producers express their concern that sire options to prevent negative inbreeding effects continues to dwindle. We certainly don’t want to mate an animal to her father or brother, but we do need to ask what the real goal is in terms of inbreeding. Should we aim for zero percent inbreeding or rather manage it to maximize profit?

The linear effect of inbreeding depression

As animals become more related to each other, inbreeding depression, or sub-par productive performance, can occur. Inbreeding depression is not ideal. Yet you should still weigh the negative effects against the added profit you could see from greater genetic gains.

Many producers buy in to the common misconception of a magic level of inbreeding that we should never exceed. In reality, we’ve seen results from numerous studies over time that show the effects of inbreeding depression to be linear.

For every 1% increase in inbreeding for a mating, you will realize $22-24 less profit over the life of the resulting offspring. You will see the same cost, or loss, when going from 9% to 10% inbreeding as you see between 1% and 2%.

Genetic progress

It’s well-documented that inbreeding has risen each year since the mainstream adoption of AI. Despite this increase, dairy cattle have made significant strides in production traits like milk, fat, and protein. It’s safe to say that producers would not trade today’s high producing cows for the less inbred, but also lower producing, cows of the 1960’s.

Inbreeding and milk production graph

Real-herd examples

Let’s look into the records of a random cross-section of 10 upper Midwest dairies averaging 1,500 cows, who implement a mating program on their farm. This analysis shows how cows with superior genetics are more productive than cows with inferior genetics, despite the more highly productive group also being more inbred.

In this analysis, cows born between 2005 and 2010, with at least one lactation on record were included. Each individual herd was first analyzed separately, and cows were split into quartiles based on their individual level of inbreeding.

Total # of cows% InbredNM$Milk Deviation1st Lact 305-Day MilkPTA DPRAvg. 1st Lact Preg RatePTA PL
25% MOST inbred from each herd38107.0158649282580.422.51.4
25% LEAST inbred from each herd37844.5121296278750.422.60.9

Here, you can see the difference in genetics, 1st lactation milk production, and NM$ between the top 25% most inbred from each herd and top 25% least inbred animals from each herd. The most highly inbred quartile of cows was also the most genetically superior group of cows in each of these ten herds.

When we measure actual performance, genetics more than make up for inbreeding depression. The NM$ levels, pounds of milk and milk deviations were all favorable for the more highly inbred, but also more genetically superior group.

This doesn’t mean that a mating resulting in 25% inbreeding is the best option. Rather, when managed properly as part of a program, excellent genetics can outweigh the results of inbreeding depression.

You may not realize that current proof values already account for the bull’s level of predicted future inbreeding. Outcross sires see favorable adjustments. Whereas, PTA’s on sires that are more closely related to the average population are negatively impacted because of these adjustments.

Determining matings

Let’s check out an example to see how managing, rather than avoiding, inbreeding is the best route.

The example below shows three sire options to use for a mating in your herd. Sire 1 and sire 2 both offer high Net Merit $ levels. However, their 8% and 6.5% inbreeding levels would be above the suggested 6.25% industry standard. That alone could eliminate them as potential mating sires in many breeding programs. Sire 3 would be a logical outcross mating in this example, resulting in a mere 1% inbreeding.

Sire OptionSire NM$Inbreeding % with cow being bredEconomic loss due to inbreedingAdjusted NM$ for level of inbreeding
18548.0184693
28456.5150695
36051.023582
0 0 Continue Reading →

A Q&A on DWP$ and WT$ – Dairy Wellness Profit $ / Wellness Trait $

Dairy Wellness Profit $ and Wellness Trait $ indexes

The Dairy Wellness Profit $ and Wellness Trait $ indexes may have you wondering whether you should adjust your genetic plan to include this information. We want to help you decide what’s best for your dairy. So we answer a few questions about DWP$ and WT$ to help you better understand these indexes.

What is Dairy Wellness Profit $ (DWP$)?

Dairy Wellness Profit $ (DWP$) is a genetic selection index. It equates to a genetic plan of 34% production–56% health–10% conformation. This differs from TPI (46-28-26) and the overall NM$ index (43-41-16).

The breakdown of the weight on health is different as well. DWP$ puts 30% of the health trait weight on WT$. This leaves 26% for the CDCB evaluated health traits of PL, DPR, SCS, DSB, DCE, CCR, HCR.

What is Wellness Trait $ (WT$?)

WT$ is a combination of the Wellness Traits (ketosis, displaced abomasum, retained placenta, metritis, mastitis and lameness). This means it is an index analogous to a 0-100-0 index, with 100% weight on health traits. However, those weights are divided between the various Wellness traits that Zoetis calculates.

Do each of the Wellness Traits get their own evaluation?

Yes. They are then combined into a Wellness Trait $ index to combine the expected impact.

Does Alta test all bulls for DWP$ and WT$?

No, but we test the sires that we predict will do well on the respective indexes. We test our bulls that have favorable health trait values and rank well on a 34% Production-56% Health-10% Conformation index. We list the top ten DWP$ sires and top five WT$ bulls in each of three categories: G-STARS, FUTURE STARS and daughter-proven sires.

What is Alta’s testing plan going forward?

This will be dependent on the feedback from the customers and the demand for this information. In the short-term we will continue to test those sires that rank well on a traditional 34-56-10 index.

How can we predict which sires will do well on these indexes?

Because the correlation between DWP$ and a traditional 34% production – 56% health – 10% conformation index is very high, we can predict quite well which sires will rank well on the DWP$ index.

0 3 Continue Reading →

The genetic guide to healthier cows

Industry buzz has been booming about new genetic programs that promise to create healthier cows.

That means it’s the perfect time to revisit the impact that selection for Productive Life within your genetic plan can have on the overall health and longevity of your cows.

 

The Productive Life (PL) number that appears for any given sire on your proof sheet is defined as the number of months longer (or shorter) that his daughters will be productive in your herd as compared to herdmates. If a bull is 7.0 for PL, his daughters within a given herd are predicted to live seven months longer than the average cow in that herd. If a bull is -2.0 for PL, his daughters are predicted to live about two months less than the average cow in that given herd.

PL is often associated with old cows. However, if you think about which cows live longest in your herd, it would be those that have no troubles calving, fewer incidences of mastitis, no respiratory issues, fewer hoof problems, and so on.

Four-event cows

In reality, genetic selection for PL doesn’t just mean more old cows; it predicts which cows are toughest, healthiest and easiest to manage. We call those the four-event cows. If you look at a cow card on your herd management software program, a four-event cow has only four events listed throughout her lactation: 1-fresh; 2-bred; 3-confirmed pregnant; and 4-dry.

If those four events are the only major things a cow experiences throughout her lactation, chances are she’s trouble-free, making you money, and will stick around for several lactations.

Any time an event takes place, such as milk fever, a displaced abomasum, retained placenta, mastitis, pneumonia, or any other disruption to the normal progression of a cow’s lactation, milk is lost. In addition to lost milk production, vet and treatment costs add to the dollars lost.

The proof is in the numbers

Selection for Productive Life propels you toward the goal of a herd full of four-event cows. Since the actual measure of PL is not calculated until after a cow leaves the herd, we can use other ways to see if higher PL bulls actually create healthier and more trouble-free cows.

# of cowsSire PLAborts‘Do Not Breed’SoldDiedMastitisRPDAKetosisPneumoniaMetritisInjuryLame
Top 50%: High PL478>3.515121136331155118
Bottom 50%: Low PL502<3.6709024152309612153762930

Table 1 breaks down the events within a real 2,400-cow Holstein herd on all first lactation animals with known sire ID’s. Based only on the animal’s parent average or Productive Life, this shows the extreme difference in health events between cows with a high PL pedigree versus those with a low PL pedigree

These are real numbers, recorded on this farm’s herd management software program. Keep in mind, management is consistent throughout the herd, and no preferential treatment is provided for any given cows.

As the table clearly illustrates, far fewer of the high PL cows had issues after calving and throughout their lactation. Fewer cows from high PL group were coded as ‘do not breeds’ (DNB) and therefore, fewer of the high PL cows died or were sold. This means more cows from within that high PL group claimed the title of trouble-free, four-event cows.

On your dairy, how much does a displaced abomasum decrease a cow’s profitability over her lactation? How much of your milk check is sacrificed with every case of mastitis? How many dollars are lost for every lame cow or case of pneumonia? If you put a dollar value to the lost production and treatment cost associated with each extra health event experienced by the group of low PL cows it adds up significantly.

Want healthier cows? Let Productive Life get you there

While environment, cow comfort and overall management practices all play an integral role in the health of any given herd, genetic selection can also aid your quest for a herd of healthy, trouble-free cows. To do that, keep these points in mind.

  1. Genetic selection for PL will help you create longer living cows.
  2. Despite new genetic programs promising added immunity or greater health during a cow’s transition period, PL remains the standard for breeding tougher, healthier cows with fewer issues throughout their lactations.
  3. Include selection for PL as part of your customized genetic plan in order to build your herd of the profitable, four-event cows.
0 2 Continue Reading →
x

Download the BullSearch App

For the best experience on a mobile device, download the Bull Search App

Download the App
Go to desktop site anyway